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Abstract Alzheimer’s disease (AD) and cancer have

much in common than previously recognized. These

pathologies share common risk factors (inflammation

and aging), with similar epidemiological and bio-

chemical features such as impaired mitochondria.

Metabolic reprogramming occurs during aging and

inflammation. We assume that inflammation is

directly responsible of the Warburg effect in cancer

cells, with a decreased oxidative phosphorylation and

a compensatory highthroughput glycolysis (HTG).

Similarly, the Warburg effect in cancer is thought to

support an alkaline intracellular pH (pHi), a key

component of unrelenting cell growth. In the brain,

inflammation results in increased secretion of lactate

by astrocytes. The increased uptake of lactic acid by

neurons results in the inverse Warburg effect, such as

seen in AD. The neuronal activity is dampened by a

fall of pHi. Pronounced cytosol acidification results in

decreased mitochondrial energy yield as well as

apoptotic cell death. The link between AD and cancer

is reinforced by the fact that treatment aiming at

restoring the mitochondrial activity have been exper-

imentally shown to be effective in both diseases. Low

carb diet, lipoic acid, and/or methylene blue could

then appear promising in both sets of these clinically

diverse diseases.

Keywords Alzheimer � Cancer � pHi �

Mitochondria � Pyruvate dehydrogenase � Lipoic acid �

Methylene blue

Introduction

The past few decades have seen very limited success in

the fight against both cancer and Alzheimer’s disease

(AD). In both cases, the therapy paradigm has been

focused on genomic abnormalities. However, evi-

dences in literature favor reviewing the current

prevailing medical dogmas for a paradigm shift.

Cancer and neurodegenerative diseases such as AD

are widely considered as two different sets of diseases

with different prognosis, sites of origin, patterns of

spread, and treatment. Cancer and AD can be seen at
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both end of a biological pattern. In cancer, there is

unrelenting cell division. In AD, there is prominent

apoptotic cell death. Cancer and AD are different

entities, but they share multiple common epidemio-

logical and biological features (Reitz et al. 2011;

Adami et al. 2008; Levy Nogueira et al. 2015). Both

AD and cancer are now considered as metabolic

diseases (Seyfried et al. 2010; Craft 2009).

Literature reports an inverse correlation between

cancer and AD (Demetrius et al. 2013; Tabarés-

Seisdedos et al. 2013; Sánchez-Valle et al. 2017). The

prevalence of AD is correlated with a decreased

incidence of cancer (Tabarés-Seisdedos et al. 2013;

Driver et al. 2012). Similarly, a occurrence of cancer is

associated with a reduced incidence of Alzheimer

(Sánchez-Valle et al. 2017).

In this review we conclude that diverging clinical

features and mutual exclusion practices may hide an

underlying common feature of cancer and AD. In

short, alkaline pHi is associated with impaired mito-

chondrial activity and unrelenting growth in cancer

(da Veiga Moreira et al. 2016). In AD the main fuel for

neurons is lactic acid. Mitochondrial failure may be

the consequence of lactic acid accumulation which

results in acidic intracellular pH, synaptic dysfunction,

amyloid deposition and ultimately apoptosis. The

difference in pHi may explain why patients with AD

are less likely to develop cancer.

Similar epidemiological patterns for cancer

and AD

In both cancer and AD, there is a small (\ 10%) but

informative proportion of the patients who have

inheritable genetically transmissible risk factors (Levy

Nogueira et al. 2015; Garber et al. 2005; Rocchi et al.

2003). More than 40 different genes are known to be

involved in cancer. For example, BCRA1 and BCRA2

carriers are at a very risk not only for breast cancer but

also for ovarian cancer and sarcoma (Levy Nogueira

et al. 2015). This risk is high enough (80%) as to

warrant prophylactic surgery (Adami et al. 2008).

Differently to more common sporadic cancer, these

tumors arise in young patients most commonly before

the age of 50. In parallel to the context, cases of the AD

are familial forms of autosomal-dominant inheritance,

which usually have an onset before the age of 60

(Blennow et al. 2006). Most of autosomal-dominant

familial AD can be attributed to mutations in one of

three genes: those encoding amyloid precursor protein

(APP) and presenilin 1 and 2 (Waring et al. 2008;

Selkoe 1999). Most cases of AD do not exhibit

autosomal-dominant inheritance and thus are termed

sporadic AD.

These genetic features are rare and should not let us

miss the mainstream. Most cases of AD and cancer are

sporadic in nature. These sporadic diseases are

strongly age-related (Demetrius et al. 2013). Cancer

and AD share two major risk factors: age and sex.

Two-thirds of cancer arise after the age of 70 (Reitz

et al. 2011; Adami et al. 2008). Such as for cancer,

advancing in age is a primary risk factor for AD. Every

five years after the age of 65, the risk of acquiring AD

approximately doubles, increasing from 3 to as much

as 69 per thousand person-years (Bermejo-Pareja et al.

2008). The second major risk factor is inflammation.

Inflammation is also a common risk factor for

cancer and AD (Reitz et al. 2011; Adami et al. 2008).

In 1863, Virchow hypothesized that the origin of

cancer was at sites of chronic inflammation (Balkwill

et al. 2001) and overall inflammation (such as

bronchitis, burn or hepatitis, etc.) showed to increase

the risk of cancer (Balkwill et al. 2001; Sun et al. 2012;

Ringehan et al. 2017; Caplin et al. 1975).

Carcinogenesis is a demonstration of the carcino-

genicity of inflammation (James et al. 1997). The

physical characteristics of the implant, rather than its

chemical composition, is the critical determinants of

tumor development. For example, chemically inert

implant can only induce cancer if their shape is

abrasive and inflammatory. The micrometer-scale

surface morphology of the implant determines the

nature of the subsequent cellular responses, which

may predispose to tumor development (James et al.

1997). Asbestos is chemically inert but is a powerful

carcinogen (Uguen et al. 2017).

Similarly, inflammation is a known risk factor for

AD (Levy Nogueira et al. 2015). Exposure to

traumatic brain injury and to stroke are core risk

factors that predisposes an individual to sporadic

neurodegenerative diseases (Levy Nogueira et al.

2018). Brain inflammation induced by repeated

trauma increases brain levels of hallmark proteins

associated with neurodegeneration such as amyloid b

1–42, observed in AD, total tau, and a-synuclein,

observed in Parkinson disease (PD) (Levy Nogueira

et al. 2018).
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AD and cancer: a drastic difference in intracellular

pH

Limitless replicative potential and apoptotic cell death

can be viewed as the opposite ends of a biological

spectrum. They may have the same primary cause.

To perform their normal physiological functions, it

is essential that cells maintain the intracellular pH

(pHi) within the physiological range. Intracellular

enzyme activity, cytoskeleton component integration,

and cellular growth and differentiation rates are all

closely associated with the pHi (Christen et al. 1983).

In the early 1920’s Otto Warburg did demonstrate a

unique feature of cancer cells, namely an increased

uptake of glucose and secretion of lactic acid by

cancer cells, even in the presence of oxygen (Schwartz

et al. 2017a, b; Alfarouk et al. 2014; Warburg 1956).

This aerobic fermentation is the signature of most if

not all cancers. Warburg also noticed a concomitant

decreased number of mitochondria as well as of their

activity level (Warburg 1956).

The Warburg effect have been proposed as a

consequence of a decreased oxidative phosphorylation

(Figs. 1, 2 and 3) (Warburg 1956; Schwartz et al.

2017a, b; da Veiga Moreira et al. 2016). Da Veiga

Moreira et al. reported that pHi of tumor cells

oscillates between 7.2 and 7.5, while in normal cells

it oscillates between 6.8 and 7.3. Alkaline pHi triggers

DNA decompaction and replication as well as cell

division (Aerts et al. 1985; da Veiga Moreira et al.

2015). Unrelenting cell growth results in increased

pressure, metastasis immune system activation

(Schwartz et al. 2017a, b).
Fig. 1 Metabolism of a normal cell. Glucose is mostly degraded

into pyruvate which is mainly degraded into carbonic gas and

water by mitochondrial oxidative phosphorylation for ATP

production

Fig. 2 Metabolism of a cancer cell. Because of decreased PDH

activity there is a shift toward the anabolic pentose phosphate

pathway and excretion of lactic acid resulting in extracellular

acidosis. There is an increase convertion of citrate to cytosolic

acetyl-CoA for lipid synthesis. Decreased mitochondrial respi-

ration jointed with lactic acid extrusion probably causing

intracellular alkalosis

Fig. 3 Metabolism of a cancer cell treated with a metabolic

cocktail (hydroxycitrate, lipoic acid, methylene blue) to enhance

mitochondria respiration. Treatment with lipoic acid results in

the activation of the PDH. Treatment with hydroxicitrate targets

the conversion of citrate to acetyl-CoA. Methylene blue

improves the mitochondria electron transfer during oxidative

phosphorylation
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Opposite to cancer, the pHi has been reported to be

acidic in AD neurons (Fang et al. 2010; Xiong et al.

2008). The exact value of the pHi in AD does not

appear to have been measured. During brain ischemia,

pHi falls to 6.5 or below (Rehncrona 1985). A fall in

pHi decreases neuronal activity (Sinning et al. 2013).

The acidic pHi plays a crucial role in the hallmarks of

the AD such as cell death (apoptosis) (Perry et al.

1980), amyloid plaques deposition (Ghalebani et al.

2012), as well as tau phosphorylation (Fig. 4) (Ba-

surto-Islas et al. 2013). AD-associated enzymes have

altered activities under acidic condition (Harguindey

et al. 2017; Boron 2004; Paris et al. 1984). Pouysségur

et al. (1986) showed that even under growth factor

stimulation, fibroblasts could not enter S phase and

divide when the intracellular pH is maintained below

7.2 (Fig. 5) (Paris et al. 1984).

Mitochondrial dysfunction as primary hallmark

of cancer and AD

Transferring mitochondria from AD subjects to cell

lines depleted of endogenous mitochondrial DNA

(mtDNA) creates cytoplasmic hybrid (cybrid) cell

lines that recapitulate specific biochemical, molecular,

and histologic AD features (Swerdlow et al. 2017).

The reason of the dysregulation of intracellular pH

(pHi) is debated. Most authors focus on ion channels

(Fang et al. 2010; Xiong et al. 2008; Paris et al. 1984;

Blass et al. 2000), but it is mostly probable that the

main reason relies on mitochondria dysfunction.

Mitochondria feed on the substrate from the cytoplasm

and in return provide energy to the eukaryote cell.

Cancer and AD metabolic phenotypes and show

mitochondrial impairment where a sharp drop in the

energy yield of the cells are reported, and in both case,

there is a depletion in the ATP level (da Veiga Moreira

et al. 2016; Blass et al. 2000; Driver et al. 2012).

Pyruvate dehydrogenase (PDH) is a complex set of

subunits, converting pyruvate into acetyl-CoA. This

complex enzyme connects the glycolysis, which takes

place in the cytoplasm, to the mitochondria, where the

Krebs cycle takes place. The activity of the PDH is

decreased in both cancer and AD (Perry et al. 1980;

López-Lázaro 2008). In AD, the decreased synthesis

of acetyl-CoA results in deficit of acetylcholine (Perry

et al. 1980). Lipoic acid is a cofactor of the second

subunit of that complex. Lipoic acid has been

suggested to improve the clinical features of AD

(Hager et al. 2007; Shinto et al. 2014). Similarly, a

combination of lipoic acid and hydroxycitrate (which

targets the ATP citrate lyase) has been shown to slow

tumor growth in mice whatever the site of primary

cells injection. Preliminary clinical results are also

encouraging (Schwartz et al. 2010, 2013).

It’s known that menopausal transition plays a role

on the prevalence of AD cases in women compared to

men. A recent study showed that menopausal group of

women had highest levels of estrogen-dependent

memory lost and amyloid plaque deposition (Mosconi

et al. 2018). Studies also report changes in brain

consumption of glucose upon menopausal transition.

For that, hormone therapy has been proposed as

potential modulator of brain bioenergetics to enhance

mitochondrial activity and maintenance of cognitive

function for reduced risk of Alzheimer’s disease

(Rettberg et al. 2014). Ratnakumar et al. (2019)

carried out post-mortem genome sequencing of

women AD brain compared to ovariectomized female

rhesus macaques subjected to estrogen intake. Inter-

estingly, researchers found that down regulated genes

in AD women are those upregulated in estrogen-

treated macaque females. Closer to our study, the

authors found that some mitochondrial genes parts of

the oxidative phosphorylation and tricarboxylic acid

pathways are downregulated in AD. Specifically, they

Fig. 4 Metabolism of a neuron with Alzheimer’s disease.

Because of decreased PDH activity there is a bottleneck at the

level of the pyruvate resulting in acidosis (decreased catabolism

of lactic acid) and decreased mitochondria respiration. The cell

turns to alternative fuel like ketone bodies joined with amyloid

plaques deposition
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reported a downregulation of the mitochondrial

MACT gene coding for malonyl CoA-acyl carrier

protein transacylase involved associated with lipid

metabolism and the respiratory electron transfer chain

complex I protein. These results support the hypoth-

esis of potential defective mitochondria in AD patients

associated with Ab plaques (Zhang et al. 2003).

Nevertheless, hormone therapy has shown mixed

results at improving cognitive functions (Maki et al.

2012; Osmanovic-Barilar et al. 2016).

Methylene blue, a century-old drug, can receive an

electron from NADH in the presence of complex I and

donates it to cytochrome c, providing an alternative

electron transfer pathway in defective mitochondria

(Schwartz et al. 2013, 2014; Yang et al. 2017). In the

AD, Methylene blue enhances glucose uptake and

regional cerebral blood flow in rats upon acute

treatment. Moreover, Methylene blue provides a

protective effect in neurons and astrocytes against

various insults in vitro, like superoxide production

(Poteet et al. 2012), as well as rodent models of AD,

PD, and Huntington disease (HD) (Yang et al. 2017).

In human, Methylene blue appears effective in the

treatment of early-stage AD and memory loss (Panza

et al. 2016; Paban et al. 2014; Riha et al. 2005).

Methylene blue increases oxygen consumption, which

can result in a decrease of aerobic glycolysis in cancer

cells and decreased cell proliferation (Wainwright

et al. 1997, 1999). Tucker et al. (2018) has detailed the

role of MB on neuroprotection and on the improve-

ment of mitochondrial activity in AD-like cell lines

and in vivo.

Low carb diet (LCD) bypasses the bottleneck at the

level of the PDH and may have beneficial effects on

neurodegenerative diseases (Barañano et al. 2008;

Sofou et al. 2017; Caplliure-Llopis et al. 2019).

Beneficial effects of polyphenols present in some LCD

have also been reported (Caplliure-Llopis et al. 2019).

These polyphenols are proposed as good antioxidants

with key roles in enhancing mitochondria energetics.

Therefore, the ketogenic diet appears promising in the

treatment of AD (Gonzalez-Lima et al. 2014). How-

ever, the application of LCD in cancer patients must be

clearly investigated, notably by the capacity of normal

cells to supply ketone bodies, the main precursor of

acetyl-CoA for lipogenesis in cancer cells (Israel et al.

2020). We propose that LCD provides energy-rich

lipids bodies to cancer, which may result in high-

throughput glycolysis to sustain anabolic pentose

phosphate pathway and amino acids synthesis since

glucose is no longer needed for lipid synthesis (Jin

et al. 2019; Epstein et al. 2017).

The intracellular acidosis in AD results from lactic

acid accumulation (Ortega et al. 2009; Schwartz et al.

2017a, b; Lauwers 1978). The mitochondria extrude

proton ions in order to synthesize ATP. A decreased

pHi gradient between the cytoplasm and the mito-

chondria has a profound impact on the energy yield of

the mitochondria, and cytoplasmic acidosis results in

decreased energy yield (Christen et al. 1983; Rial et al.

1999).

Inflammation causes increased lactate secretion

Inflammation paves the way toward carcinogenesis.

Inflammation is characterized by tumor, dolor, rubor,

and color as stated by Galen 2000 years ago.

Inflammation can be caused by factors as diverse as

heat, freezing temperature, trauma or multiple chem-

icals. Vascular leakage is a common feature of

inflammation (Schwartz et al. 2009a, b; Cotran et al.

1964; Roviezzo et al. 2005). It can be caused by direct

damage, resulting from a foreign body, burn or

necrosis. This partial digestion of the protein will

release larger amount of osmolites, further increasing

the extracellular osmolarity (Schwartz et al. 2009a, b;

Abolhassani et al. 2008).

Increased extracellular osmolarity results in

increased cytokines secretion (Abolhassani et al.

Fig. 5 The intracellular pH (pHi) of a normal cell oscillates between 6.8 and 7.2 from G0 to G2 phase of the cell cycle. In cancer cells,

the alkaline pHi is connected to uncontrolled cell proliferation. Neurodegenerative diseases are correlated with acidic pHi and cell death

123

Biogerontology

Author's personal copy



2008). Exposure to cytokines has a profound effect on

the metabolic profile of the target cells. In dendritic

cells, lipopolysaccharide promotes the Warburg effect

(Hsu et al. 2008; Palsson-McDermott et al. 2013).

Inflammatory immune cells, when activated, display

much the same metabolic profile as a glycolytic tumor

cell (Palsson-McDermott et al. 2013). This involves a

shift in metabolism away from oxidative phosphory-

lation towards anabolism. The result of this change in

macrophages is to provide metabolic intermediates for

the biosynthesis of immune and inflammatory pro-

teins. Also, a rise in tricarboxylic acid cycle interme-

diates results in lipid biosynthesis (Palsson-

McDermott et al. 2013).

In inflammation such as infection or trauma, there is

increased secretion of lactate resulting in increased

serum and urine level of lactate (Kumar et al. 2006;

Nguyen et al. 2010; Marcoux et al. 2008).

Increased lactate secretion may trigger initiation

of AD

Recent studies have shown a close intertwined

metabolism between astrocytes and neurons. In phys-

iological conditions, glucose is metabolized to lactate

by astrocytes and microglial cells to a lesser extent,

and the lactate is released into the extracellular milieu

(Magistretti et al. 2018; Walz et al. 1988; Descalzi

et al. 2019). Researchers have highlighted the exis-

tence of a physiological gradient of lactate between

astrocytes and neurons (Mächler et al. 2016). The

authors reported a higher level of lactate in astrocytes

as well as a net flow of lactate to neurons. Thus,

neurons use lactate as a substrate for mitochondrial

energy production by oxidative phosphorylation (Pel-

lerin et al. 2007). As reported above for dendric cells,

inflammatory stresses also affect the glials-neurons

symbiotic-like relationships in lactate managements.

Astrocytes exposed ‘‘in vitro’’ to inflammation secrete

larger quantities of lactate (Iglesias et al. 2017; Fuller

et al. 2010). In human, during brain inflammation,

there is lactic acid secretion in the CSF (Lauwers

1978). This increased secretion of lactate is also

present in neurodegenerative diseases as it can be

measured in the spinal fluid (Sonntag et al. 2017;

Koroshetz et al. 1997). In addition, it has been shown

that the gene coding for the enzyme lactate dehydro-

genase, which allows the conversion of pyruvate to

lactate during glycolysis, is overexpressed in mice

showing signs of aging (Ross et al. 2010; Rossignol

et al. 2003). In addition, the authors showed that the

mitochondrial activity of cells in aging tissues is

largely attenuated (Ross et al. 2010). Therefore, these

studies have made possible rationalizing mechanisms

potentially at the origin of minors neurodegenerative

diseases, possibly by the cytosolic acidification of

neurons due to a non-metabolizable overconsumption

of lactate, is hypothesized here and denominated as the

reverse Warburg effect (Demetrius et al. 2014).

Studies have shown that ‘‘resting’’ microglia adapt

their glucose uptake upon inflammatory stimuli

(Wang et al. 2019; Orihuela et al. 2016). This is

referred as microglia activation, which occurs when

‘‘resting’’ microglial macrophases encounter local

inflammation and perform cellular debris cleaning

and maintenance of the central nervous system (CNS).

Microglial cell activation is associated to a metabolic

switch from OXPHOS to aerobic glycolysis (Orihuela

et al. 2016; Afridi et al. 2020). Uncontrolled microglia

activation dissipates the metabolic perturbation by

reprogramming to astrocytes showing Warburg-like

phenotype, probably the main causes of the enhanced

neurotoxicity in AD and in other neurodegenerative

disease (Cartier et al. 2014; Afridi et al. 2020).

The most probable mechanism leading to neuro-

toxicity and the manifestation of the first phenotypic

signs of AD is the increased lactate uptake and reduced

mitochondrial activity resulting in pronounced cyto-

plasmic acidification (Erlichman et al. 2008) and

probably cell death (Zhou et al. 2010; Cole et al.

2008). Neurons poorly oxidize lactic acid, which

accumulates in the brain and favoring amyloid beta

(Ab) plaque deposition (Redjems-Bennani et al. 1998;

Liguori et al. 2015; Xiang et al. 2010; Yates et al.

1990). Interestingly, microglial cell and neuron

in vitro co-cultures show increased neurons death in

presence of Ab plaques (Giulian et al. 1996).

Similarly to astrocytes/microglial cells in AD,

cancer-associated fibroblasts in tumor stroma tend to

activate glycolysis and secrete lactate, which leads to a

reverse Warburg effect, feeding cancer cells with

lactate (Yoshida 2015).
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Shift to alternative energy sources

As mitochondria are (at least partially) disconnected

from the glycolytic pathway, the cell must also count

on alternative energy sources.

In cancer, there is an increased uptake of glucose

with enhanced HTG, which provides cancer cells with

two ATP molecules per molecule of glucose. Pyru-

vate, which cannot be converted into acetyl-CoA, is

converted and secreted as lactic acid in the extracel-

lular space. This is a clear manifestation of the

Warburg effect (Swerdlow et al. 2017).

In AD, there is a generalized shift from glycolytic

energy production toward the use of alternative fuel,

such as ketone bodies (Yao et al. 2009, 2010). This is

evidenced by a 45% reduction in cerebral glucose

utilization in AD patients, which is concurrent to a

decrease in the expression of glycolytic enzymes

coupled to a decrease in the activity of the PDH

complex and of the respiratory complex IV cyto-

chrome c oxidase. ‘‘Patients with incipient AD exhibit

a utilization ratio of 2:1 glucose to alternative fuel,

whereas comparably aged controls exhibit a ratio of

29:1, whereas young controls exclusively use glucose

as with a ratio of 100:0 ratio’’ (Yao et al. 2009; Hoyer

1991). These are markers of decreased mitochondrial

bioenergetics and of early-onset Alzheimer disease.

White matter degeneration is also a pathological

hallmark of neurodegenerative diseases including

Alzheimer’s disease. One can thus propose that a

decline in mitochondrial respiration and pronounced

lipid oxidation trigger mitochondrial hydrogen perox-

ide production and cytosolic phospholipase-A2 sph-

ingomyelinase pathway activation. Indeed, an

increase in fatty acids and mitochondrial fatty acid

metabolism machinery was concurrent to a rise in

brain ketone bodies and a decline in plasma ketone

bodies. ‘‘catabolism of myelin lipids to generate

ketone bodies can be viewed as a systems level

adaptive response to address brain fuel and energy

demand’’ reported Yao et al. (2010). As brain cells

shift to alternative sources, there is a decrease in the

glucose uptake such as seen in Positron Emitting

Tomography (Iaccarino et al. 2017).

Recent literature has led to a strong interest in

ketone bodies for the possible management of patients

with mild cognitive impairments or as a preventive

approach. It was first used in the treatment of epilepsy

by mean of prolonged fasting or by ketogenic diet

(KD) and supplementation of b-hydroxybutyrate, a

medium-chain triglyceride (Stafstrom and Rho 2004).

These diets could have potential benefits on AD

patients by reducing local inflammation accompany-

ing high-throughoutput glycolysis in glial cells and

extinguishing mitochondrial ROS accumulation in

neurons. As highly encouraging these approaches can

be for the management of AD patients (Taylor et al.

2019; Brandt et al. 2019), they can also have a

negative effect on cancer patients because the ketone

bodies catabolism pathway is widely used by cancer

cells as well, notably via the Succinyl-CoA:3-ke-

toacid-coenzyme A transferase (SCOT) enzyme

(Israël and Schwartz 2020; Yao et al. 2010). However,

further research needs to be conducted to determine

the benefits of these complementary therapies.

Conclusion

Literature thus suggest that AD and cancer have more

in common than previously acknowledged. Showing

similar epidemiological patterns (age and inflamma-

tion), they may also share a common biochemical

explanation, i.e. a decreased mitochondria horse-

power. The different clinical features may be the

simple consequence of the different cell fuel. In cancer

cells the major nutrient is glucose for nucleotide and

amino acid production, glutamine for amino acids and

nitrogen donor, ketone bodies for lipids and membrane

synthesis. In Alzheimer disease, lactic acid excreted

by astrocytes is reported as a major fuel for neurons.

We assume that in cancer cells, the dysfunctional

mitochondria may be a relative consequence of a

prolonged intracellular alkalinization promoting cell

proliferation. Conversely, in Alzheimer disease, the

intracellular acidification, probably a consequence of

lactic acid consumption, may be involved in mito-

chondrial dysfunction and neurons apoptosis.
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